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The asymptotic stability of a rapidly rotating, horizontally bounded fluid, 
heated from below, is treated using boundary-layer methods. It is shown that the 
rotational constraint is so strong as to preclude instabilities, if the interior regions 
of the fluid are considered to be inviscid. The correct formulation allows this 
constraint to be broken by introducing horizontal diffusive effects into the 
interior, while vertical diffusion is confined to Ekman layers on the horizontal 
surfaces; no vertical layers exist. Moreover, the mechanism of instability is 
(to the lowest order) associated with energy conversions entirely within the 
interior region. The present formulation elucidates the role of the Ekman layers 
in producing high-order corrections to the limiting critical Rayleigh number, and 
the asymptotic results are extended to include higher-order terms. The effect of 
rigid side walls on the critical Rayleigh number, and on the azimuthal wave- 
number, is considered. Except for very tall cylinders, the critical Rayleigh 
number is unaffected by the presence of side walls; the results for different 
azimuthal modes of convection are inconclusive, but indicate that no great error 
occurs if disturbances are assumed axisymmetric. 

1. Introduction 
The classical analysis of the stability of a fluid layer heated from below and 

subject to Coriolis force is due to Chandrasekhar (1953) and Chandrasekhar & 
Elbert (1955), and is summarized in Chandrasekhar (1961, chap. 111). The fluid is 
assumed stagnant relative to a spinning frame and linearly stratified in the 
vertical. As has long been recognized, this is an a,cceptable approximation to the 
basic state if a suitable Froude number, 

F = w2ao/g, (1.1) 

is small. Here w is the rotational frequency, a, a characteristic horizontal length, 
and g the aceeleratiion of gravity. A linear stability analysis of the Boussinesq 
equations by means of normal modes yields Rayleigh number-wave-number 
relationships, with the Taylor number as a parameter. The problem is complicated 
bythe fact that upon rotation oscillatory neutral states become possible; however, 
for Prandtl numbers greater than about 0.7, the onset of convection is stationary, 
and the critical Rayleigh number is independent of the Prandtl number. This 
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criterion is provable for free-free ' boundary conditions, and is approximately 
valid for the ' rigid-free ' and ' rigid-rigid ' cases (Finlayson 1968). 

However, Veronis (1966,1968) has cast doubt upon the validity of these linear 
results, especially in the oscillatory case. By the treatment of the full non-linear 
Boussinesq equations for a single convection cell, Veronis has shown that sub- 
linear finite amplitude instabilities may occur over a limited range of Prandtl and 
Taylor numbers, i.e. the predicted critical Rayleigh number is lower than that 
predicted by the linear theories. Use of a severely truncated model representation 
for the disturbances yielded steady sublinear instabilities for Prandtl numbers 
greater than 4 2  (Veronis 1966). Extensive calculations (Veronis 1968) indicate 
that the sublinear instability occurring at  moderate Taylor numbers arises from a 
dominance of non-linear over Coriolis effects (a suitable Rossby number is large), 
while at higher Taylor numbers the rotational constraint becomes dominant. 
These effects are not observable for larger Prandtl numbers, since the scale of the 
motion decreases with increasing Prandtl number, such that an approximate 
thermal wind balance is achieved (Veronis 1968, p. 116). Accordingly, our linear 
treatment below will be assumed valid for > 0(2) ,  say, for which onset is both 
stationary and predicted accurately by linear tjheory . 

Linear stability calculations in the case of stationary onset yield asymptotic 
relations of the form, 

Here R = g a A T d 3 / v ~ ,  and r = 4u2d4/v2 are the Rayleigh and Taylor numbers as 
usually defined, a is the dimensionless horizontal wave-number and Po, a. are 
numerical constants. These constants were first believed to depend upon the 
boundary conditions at  the horizontal surfaces (Chandrasekhar 1961, p. 104)) but 
the asymptotic analysis of Niiler & Bisshopp (1965) has since proved that, to the 
lowest order, Po = 3($n2)z = 8.6958, 

a. = (in2)* = 1.305, 

results which are independent of the nature of the bounding surfaces. For rigid 
boundaries, the first correction to the asymptotic results (1.3) is of order 7-*; 

It was noted that this correction roughly accounts for the discrepancy between 
the asymptotic theory and the Rayleigh-Ritz calculations of Chandrasekhar. 

In  this paper we consider the stability of a radially bounded rotating cylinder 
of fluid. The basic state is stagnant with respect to a rotating co-ordinate system, 
unstably stratified, and the horizontal surfaces are rigid. The treatment will be 
asymptotic in the sense that the Taylor number will be assumed infinitely large. 
In a subsequent paper we consider the stability of a basic state which is not 
stagnant, i.e. weinclude the effect of motions produced by the centrifugal accelera- 
tion. As a necessary preparation for the treatment of more complicated basic 
states, we demonstrate here that boundary-layer methods may be applied 
successfully to the stability problem. Furthermore, the result sfor radially bounded 
fluids are shown to be similar in many respects to those for unbounded layers. 

In  § 2 the basic equations governing the linear stability of an initially stagnant 
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fluid are presented in a form suitable for treatment of the asymptotic problem. 
The analysis opens in $ 3  with a demonstration of the failure of the standard 
Ekman analysis to predict the stability characteristics of the fluid. Aided by 
consideration of the mechanical energy balance, i t  is shown that the rotational 
constraint precludes instability, and i t  is necessary to introduce the effects of 
horizontal diffusion into the interior regions in order to break this constraint. 
The equations are resealed in 94, and, by means of a slippery side-wall analysis, 
the asymptotic normal modes results are retrieved ($5) in a slightly more general 
form, and extended to include 0 ( d )  correction terms. The mechanism of 
instability is shown to be energy conversions in the interior regions of the fluid. 
Lastly, in 8 6, the effect of lateral walls on both the critical Rayleigh number and 
the preferred mode of convection is treated; it is shown thab, although the 
axisymmetric mode is not clearly the least stable according to linear theory, no 
serious error in the Rayleigh number arises if the disturbances are assumed to be 
axisymmetric. 

2. Basic equations 
Consider a right circular cylinder of fluid having radius a, and depth d ,  rotating 

about its vertical axis with angular velocity w .  It is assumed that F 4 1, and that 
centrifugal effects are negligible, so that the fluid is linearly stratified and stagnant 
with respect to a rotating reference frame. (For the effect of small but finite F 
on the basic state see Barcilon & Pedlosky (1967c).) Employing the Boussinesq 
approximation, and the equation of state 

P = Po(l-aP-To)) ,  (2 .1 )  

the equations governing the linear stability of the fluid (assumed t o  have suffi- 
ciently high Prandtl number so that onset is steady) become 

V . q ’ =  0, ( 2 . 2 4  

2w(k  x 9’) = -p , lVp’+gaT’k+vV2q’ ,  (2 .2b )  

- ( A T / d )  (k. q’) = K V ~ T ‘ .  (2 .2c)  

Hereg, a, K ,  v have their usual meaning, A T  is the imposed temperature difference, 
po the reference density, g‘ is the fluid velocity vector, T‘ the temperature pertur- 
bation from linear stratification, k the unit vector in the positive z direction, and 
V, V2 are taken as three-dimensional operators in a rotating cylindrical polar 
co-ordinate system with origin at  the lower bounding surface. p‘ is the reduced 
pressure, 

P’ = P+pogz-po(w2T2/2). (2 -3 )  

For rapidly rotating fluids, we take the scaling for the dimensionless (unprimed) 
quantities, 

p’ = podaATgp,  q‘ = (gaAT/Bw)q,  

23-2 
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so that 0 < z 6 1, 0 6 r 6 a& e r,, and the dimensionless formulation becomes 

where 

v . q  = 0, ( 2 . 4 ~ )  

k x q  = -Vp+kT+EV2q, ( 2 . 4 b )  

( 2 . 4 ~ )  - aS(k. 9) = EPT, 
E = v /2wd2 

a = V / K  

(the Ekman number), 

(the Prandtl number), 

gaAT 
4W2d 

x=-- (the stratification parameter). 

The Ekman number is defined so that 

E2 = 7-1, (2 .5 )  

thus facilitating comparison with previous results. The boundary conditions to 
be applied are 

T = 0,q = 0, z = O , 1 ,  ( 2 . 6 )  

q=O,  r = r ,  (2.7) 

and either T = 0, r = ro, (conducting walls), ( 2 . 8 ~ )  

or aT/& = 0, r = r,, (insulated walls). ( 2 . 8 b )  

The quantity US is sometimes referred to as the stratification (Barcilon & Ped- 
losky 1 9 6 7 ~ ) .  Furthermore, except for factors of 2 and the minus sign in ( 2 . 4 ~ )  
denoting unstable stratification, equations (2.4) are identical to those governing 
the motions of a rotating fluid at low Rossby number at conditions varying only 
slightly from linear stratification (Barcilon & Pedlosky 1967 a,  b; Greenspan 
1968, p. 16). Although the set (2.4) describes a decidedly different physical 
situation than that considered by Barcilon & Pedlosky, there is a close mathe- 
matical analogy. We can therefore use the work of Barcilon & Pedlosky to 
indicate possible boundary-layer attacks. From this latter work it is known that 
solutions to the governing equations depend critically on the relation of aS to E 
as E-tO. 
08 is related to the Rayleigh number by 

OS =RE2, (2.9) 

so that the asymptotic relation for unbounded layers, R+ E-Q, becomes 
OS = O(E#), E -+ 0. If this relation is assumed to hold for radially bounded Iayers, 
and if we consider stratifications of O(EQ), we may draw the conclusion that a 
standard boundary-layer analysis (i.e. inviscid interior regions and interior length 
scales independent of E )  would yield only the trivial solution. This is so because 
the lowest-order interior problem wouldnot contain the effect of the stratification. 
This does not imply that aS = O(E3) is not the critical stratification for bounded 
layers, but only demonstrates the failure of the usual boundary-layer attack. 
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It is of interest to seek eigensolutions to the problem in the parameter space 
for which the lowest-order problem includes the non-homogeneity of the fluid, 
i.e. for the case, 

We show below that although non-trivial solubions to (2.4) exist in this range, 
they yield no critical Rayleigh number in the usual sense. This seems to be a 
consequence of the fact that the isobars and isotherms of the present basic state 
are parallel. 

(TS = O(E*), €2 +- Ef. (2.10) 

3. Classical Ekman analysis, CAS = O(E4) 

then yield for the interior variables, 
To begin, we consider regions away from solid surfaces to be inviscid, and (2.4) 

( 3 . l a )  

(3 . lb )  

( 3 . 1 ~ )  

( 3 . l d )  

-0-8~ = EV’T. ( 3 . l e )  

In  writing (3.1 e ) ,  we anticipate the fact that the horizontal Ekman layers entrain 
(expel) fluid with axial velocity O(E4) for which convection will balance conduc- 
tion. Substituting the geostrophic components (3.1 b, c) into the continuity 
equation yields the familiar result, 

aW 

az 
- = O+O(E). 

We also write from (3.1 c) 

(3.3) 

where e(r, 8 )  is a function of integration. The geostrophic components u, v must 
be reduced to zero at  z = 0 , l  by Ekman correction fields. The scaling in these 
layers is u, v = O( l), w = O(E*), T = O(E). We do not give the details of the 
Ekman layer analysis, since the effect of these layers on the interior fields is 
adequately described by the Ekman compatibility relation which the interior 
axial velocity must satisfy. For the present case, this relation takes the form, 

(3.4) 

(See, for example, Barcilon 1964, 1967.) Here < = k . V  x q is the z component of 
the interior vorticity, and is related to the interior pressure p by 

< = Y P ,  (3.5) 
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Applying (3 .4 )  to the interior fields, we determine V;e and w, 

(3 .7a )  
1 1  

Vte = - I. V2,T dz, 

(3 .7b)  

The energy equation then becomes the determining equation for the eigenvalue 
rrX (equivalently, the critical Rayleigh number), viz. 

(3 .8 )  

Here we have put A = d E - 3 / 2  J2, and A becomes the O ( 1 )  eigenvalue to be 
determined. The boundary conditions on the interior temperature are 

T = O ,  ~ = 0 , 1 ,  

and, if the side walls are conducting, 

T = 0, r = ro. 

We do not write conditions if the walls are insulated, since this would require a 
detailed boundary-layer analysis near the side walls (see, for example, Homsy & 
Hudson 1969). A discussion of conducting side walls will suffice here. If we now 

Put 

where J, is the mth-order Bessel function of the first kind, and a is a wave- 
number satisfying 

the energy equation gives for t (z) ,  

T = Re(eimst(z) Jm(ar ) ) ,  (3 .9 )  

Jm(ar0) = 0, 

t = 0, z = 0 , l .  

Letting 

eigensolutions of (3.10) are simply 

K = Jo' t (z )dz  (a constant), 

( 3 .  IOa) 

( 3 .  l o b )  

AK(cosh (a)  - 1) 
sinh (a)  t ( z )  = sinh (ax) - RK cosh ( a z )  + A K .  (3 .11)  

Inserting (3 .11)  into the definition of K yields the eigenvalue (Rayleigh number- 
wave-number) relation, 

a 
a - 2 tanh ( a / 2 )  ' A(a) = - - -  (3.12) 
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which is seen to have no extremum, 0 < a < co; thus, we conclude that no critical 
Rayleigh number exists in the parameter region, 

R = O(E-3), E+O. 

The reason for this can be seen as follows; the potential energy of the fluid due 
to its unstable stratification must be released in order for onset of convection to 
occur. This release occurs when a Rayleigh number is reached such that the rate 
of viscous dissipation of kinetic energy balances the rate of release of potential 
energy (Chandrasekhar 1961, p. 130). For the present case, we formulate this 
balance by taking the vector product of the velocity with the equations of 
motion and integrating over the volume, viz. s V q . ( k x q ) d V  =sv(-q.Vp+q.kT+Eq.V2q)dV. (3.13) 

Noting that q . k x q  = 0 and 

for solid bounding surfaces, we have 
n n 

(3.14) 

where @ is the dissipation function, which for the present case may be written 

@ = 2[(ur)2+ (r-1(2)0 + u))2+ ( W J q  + [r(r-1u),+r-1u0]2 

+ [r-lw~ + v,]~ + [u, + w?]'. (3.15) 

The first term in (3.14) represents the rabe of release of potential energy and the 
second is of course the viscous dissipation of kinetic energy. For instability to 
occur there must be a balance between them. 

For the solution just obtained, there can be no balance in the interior since 

SVwTdV = O(E)) ,  

E @ d V = O ( E )  
S V  

S v  

while 

there. However, due to the Ekman length scale, it is true that the dissipation, 

E @dV = O(E)), 

in the Ekman layers (see, for example, Barcilon 1964, p. 298). This possible 
balance between the rate of release of potential energy in the interior and viscous 
dissipation in the Ekman layers does not give rise here to an instability as it did 
in the baroclinic stability problem in an annulus treated by Barcilon (1964). This 
is apparently the case because the mechanism of instability differs in the two 
problems. In the baroclinic stability problem, the instability occurs because a 
fluid particle travelling vertically moves between isobars and isotherms which 
enables it to release its potential energy. For the present problem, the isotherms 
and isobars are essentially parallel (consider (2.3) with B' < 1); thus, there is no 
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‘ baroclinicity ’ in the basic state and this mode of instability is absent. Paren- 
thetically, the fact that this possible balance did not produce an instability is an 
indication that the Ekman layers will have a higher-order effect on the stability 
characteristics of the fluid; this is confirmed in the next section. 

It appears, then, that the rotational constraint together with the assumption of 
O(1) horizontal, as well as vertical variations in the interior, combine to preclude 
any instabilities in this parameter region. In  the following section, we construct a 
solution for which the necessary balance in (3.14) is effected in the bulk of the 
fluid. As a final remark, we note that the governing equations (3.1) are hydrostatic 
in the vertical; hence, any temperature perturbation is balanced by a vertical 
prcssure gradient, and any instabilities are effectively suppressed. Not sur- 
prisingly, the correct asymptotic treatment of the next section relaxes this 
hydrostatic reshaint by introducing the effects of diffusion into the inteiior. 

4. Ekman analysis with O(E-9) horizontal variation 

zontal variation of disturbances is dimensionlessly 
We will now treat the stability problem under the assumption that the hori- 

alar - E-9, E -+ 0,  

and, together with a modified Ekman analysis, we will obtain a formulation of the 
stability problem which is uniformly valid as E-tO.  We are led to pick this 
horizontal variation, since it is suggested by the normal modes results for an 

infinitive layer, i.e. alar - a E-S. 

Furthermore, numerical results for finite Taylor numbers in a bounded cylinder 
(Homsy 1969), indicate that: (i) the horizontal scale of the motion decreases with 
decreasing E ,  and (ii) no regions of sharp horizontal gradients (vertical boundary 
layers) form as E decreases. Lastly, the rotational constraint requires a/& = O( I), 
so that the only apparent way to satisfy the mechanical energy balance is to relax 
the condition ajar = O( 1) .  

We thus define a new dimensionless co-ordinate 

x = r’/(dEf), 

which has limits 0 6 x 6 r,, E-9. Furthermore, following Niiler & Bisshopp, we put 

R = PE-), 

where P is now the O(1) constant eigenvalue whose determination yields the 
asymptotic dependence of R on E. With the new scaling, (2.4) become 

(k . q), -k E-$Vl. q = 0, (4.la) 

k x  q = -E-:Vlp-kp,+E:V2,q+Eq,+kT, (4 . lb)  

( 4 . 1 ~ )  - PE$(k.  4) = EjV2,T + ET,. 

Here 

and 

( 4 . 2 ~ ~ )  

(4.215) 



The asymptotic stability of a bounded rotating Jluid 361 

We now expand the interior dependent variables and the eigenvalue in an 
asymptotic series in EB, viz. 

We anticipate powers of E),  that being the common factor between the interior 
horizontal scale and the vertical Ekman scale. The expansion (4.3) then yields 

x-1v0, 0 + x- l (mo),  = 0, (4.4a) the sets, 

(4.4 b , c )  

0 = - ~ 2 ,  + V 2 , ~ o  + T2, (4.4 d )  

- Powo = V2,T2, (4.4e) 

(4.5b) c )  

wo = p2, 2) uo = - 2-1 P2,0, 

x-lwl, 0 + x-l(xul)z = 0, (4 .5a)  

0 = - P ~ , ~ + V & + T ~ ,  (4 .54  

zil = p3, 2) u1 = - x-1 P3,6, 

- (Po w1 + Pl w,,) = VqT,. (4.5e) 

Since (wo, uo), (vl ,  ul) are in geostrophic balance, the continuity equation is 
degenerate, and we must continue the expansion to O(E*) to obtain an equation 
relating wo and p , .  These O(Ef) equations are 

(4.6a) 

(4.6b) 

(4 -6) 

Here )z and )# denote the x and 0 components of the vector V2,qo, respectively. 
Eliminating uo and vo between (4.6a,b,c) and ( 4 . 4 6 , ~ )  leads to the required 

(4.7) 
relation, 

A similar relation holds for wl, i.e. 

aw,jaz = - v,4p3. (4.8) 

awolaz = -v:p,. 

Closed sets for the first- and second-order eigenvalue problems can now be 

aw0 (4.9a) 

0 = --Z+VZw aP 1 O+TD (4.9b) 

written, viz. 
- = - V b , ,  
82 

az 

-Powo = V;T,; (4.9c) 

(4.10a) 

0 = --+vzw 8P 1 1+T3, (4.106} 

- ( P o ~ l + P l ~ o )  = V2,T3. ( 4 . 1 0 ~ )  

az 
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It is seen that the assumed horizontal scale has resulted in an interior problem of 
sufficiently high order to satisfy the conditions at  the side walls, and thus as 
indicated above, we expect no vertical boundary layers. The systems (4.9), (4.10) 
are only of second order in z however, and we cannot satisfy all of 

w = 2) = u = T = 0, 2 = 0 , l .  

In  order to derive proper conditions for the interior fields, it is then necessary to 
consider the Ekman layers near x = 0,1. Denoting the Ekman correction fields 
with a tilde, we write 

9 = q(x, 8,4 + Q(x, 8,6), (4.1 1 a )  

T = T(x ,  8,4 + T ( x ,  8,6), (4.11b) 

P = P@, 874 +8@, 8,0, (4.11 c) 

where 6 is the Ekman co-ordinate 

1: = co = Z/(SE)* 

5: = c1 = ( 2 -  1)/(2E)t near z = 0, and 

near z = 1. Thus, 0 < c0 6 co, - 00 6 cl 6 0. The equations governing the tilde 
fields (near eitiher z = 0 or x = 1) become 

1 
- ( k . q j 5 + E * ( V 1 . q )  = 0, 
J 2  

(4.1 .2a) 

(k x ijl) = - (2E)-h(k175) -Ed(Vlfj) + E N ; Q + + Q c 5 +  kp, (4.12b) 

- PE*(k .  4 )  = E*Vt!F + ;!Pgr. ( 4 . 1 2 ~ )  

Again we expand 4 = Qo+E&Ql+ ..., (4.13a) 

!.I?= To+E@l+..., (4.13 b)  

ji = E@,+.... ( 4 . 1 3 ~ )  
For the first order, we have 

(4.14a) 

(4.14b) 

(4.144 
1 

o = - - f j  4 2  3,5 +qj 2 o,55+Toio, (4.14 d )  

Tlo,ss = 0. (4.14e) 

From (4.14a, d, e )  we obtain Go = go = To = 0 for both top and bottom layers. 
Equations (4.14 b, c) yield the usual Ekman spiral solution, which when required 
to reduce the interior components to zero at the surfaces yields 

Go@, 8, Co) = - e-co(uo(z, 8,O) cos C0 + vo(x, 8 , 0 )  sin c0), 
Go@, 8, c0) = - e-<o(vo(x, 8 , O )  COB c0 - uo(x, 8,o) sin C0), 

- 

(4.15a) 

(4.15 b )  

= p2 = 0, and the above analysis 
with similar expressions near the Cop. 

At this point we note tihat, from ( 4 . 1 2 ~ )  
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suffices to set boundary conditions for the first-order interior problem, (4.9). 
We obtain these from the original conditions as 

w0 = T2 = 0, z = 0,1.  (4.16) 

These conditions are not independent, however, in light of ( 4 . 9 ~ ) )  and we take as 

(4.17) 
our conditions 

These are the same conditions arrived at  heuristically by Chandrasekhar 
(1961, p. 104); and they were shown to be the correct ones a posteriori by the 
asymptotic analysis of Niiler & Bisshopp. 

Before discussing solutions to the first-order problem, we complete the speci- 
fication of the second-order problem by considering the second-order Ekman 

( 4 . 1 8 ~ )  
equations, 

(4.18b) c) 

wo = 0, 2 = 0) 1. 

c1,5 = - &-l(co, B + (x40),), 

- 2G, = El, 55, 24, = G,, 55, 

(4.18d) 

q,<[ = 0. (4.18e) 

Here we have used the fact that 9, = 0. As noted above, PI = 0, but because of 
( 4 . 1 8 ~ ) ~  the O(E*) vertical velocity in these layers is not zero, but is equal to the 
usual Ekman suction velocity modified in magnitude due to the O(E*) horizontal 
variation. Thus, an integration of ( 4 . 1 8 ~ )  for the top and bottom layers then 
produces the modified Ekman compatibility condition which the O(E*) axial 

(4.19) 

Thus, w,, unlike wo, does not vanish at the boundaries, but in fact must balance 
the small O(E$ flux required by the convergence of the first-order Ekman layers. 
Lastly, we note thab (4.18b) c) are of sufficient order to reduce the second-order 
interior fields to zero a t  the boundaries. 

It is of interest to demonstrate that the problem posed with the above scaling 
is capable of satisfying the mechanical energy balance in the interior alone. For 
the present formulation, w = O ( l ) ,  T = O(E*) in the interior, so that 

,l 

J wTdV = O(E*) 
V 

(4.20 a) 

there. For the dissipation, we now recognize thaC interior motions have a new 
horizontal scale, while the interior velocity itself is O(1). Thus, from only certain 
terms in a, 

(4.20b) 

due to the new scale, x. A balance is now clearly possible, and the instability is 
shown to be due to energy conversions in the interior region of the fluid. As men- 
tioned above, it was necessary t o  introduce diffusional effects into the interior, 
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so that the vertical momentum balance is no longer hydrostatic (see (4.9b)). 
Indeed, this is the only way in which the rotational constraint (i.e. the fact that 
axial variations and axial velocities are inhibited by rotation) can be relaxed, so 
that the energy conversion required for instability may take place. We make 
heavy use of these facts in a subsequent paper, where an understanding of the 
above formulation will be necessary. 

5. Stability results for slip walls 
It is of interest to consider the stability problem for slippery side walls for three 

reasons. First, we wish to ensure that the boundary-layer analysis will yield the 
correct asymptotic results obtained for normal modes. Once having accomplished 
this, we then use our boundary-layer formulation to extend the results to O(E)). 
Secondly, we demonstrate that asymmetric three-dimensional disturbances are 
valid planform functions, giving results equivalent to normal modes. This does 
not appear to have been shown previously, although the axisymmetric demon- 
stration is due to Miiller (1965). Thirdly, the above formulation affords an 
explicit delineation of the role of the Ekman layers in producing O(EQ) corrections 
to the asymptotic results. 

We begin by combining (4.9) into a single equation for wo, viz. 

a2w 
PoV2,Wo = -$ + qw,, ( 5 . 1 ~ )  

wo = 0, 2 = 0, l .  (5 . lb )  

For slippery side walls, we drop the boundary conditions at  x = roE-i, and 
separable solutions to (5.1 a, b )  are then 

wo = Re ( 2 k  sin (nnz) e imoJm(m)) ,  (5-2) 
if Po satisfies the eigenvalue relation 

(nn-)2 + a6 
a2 . Po = (5 .3 )  

Here OL is related to the wave-number a as 

a = aE-f. (5.4) 

The relation (5.3) is of course the same as that obtained from normal modes 
(Niiler & Bisshopp 1965, p. 756), and attains its minimum at n = 1; 

a 6 6 - 1  2 
c - z r ,  

aC = 1.305, (5.5) 
for which Po = 3a: = 8.6986. (5.6) 

Furthermore, the form (5 .2 )  of the disturbance may be interpreted as describing 
n circulation cells having azimuthal wave-number m. By relating wo to uo via the 
continuity equation, the number of cells is related to the aspect ratio of a cylinder 
having slippery insulated sidewalls as 

(5.7a) 

(5.76) 
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where ar is the nth zero of J,, i.e. 

J,(a?) = 0 (n = 1,2, ...). (5 .8)  
We now consider the second-order eigenvalue problem posed by (4.10) for the 

case of slip walls. Eliminating p3,  T3 we have 

P,v2,wl-+Plv2,wo = 2 + v : w 1 ,  

W1ls+~ = V%)212/21+f. 

Using our results for wo, p,, (5.9b) may be written 

(5.9a) 

(5.9b) 

(5.9c) 

ID is convenient to introduce the notation 

w, = Re (Wo(z)eimsJm(olx)), 
w1 = Re (Wl(z)eimffJ,(az)), 

where of course W,(x) = Ztsin(7rz). Equation (5.9a) then yields for W, 
v; - a6W1 + a2(P0W1 + PIW,) = 0. (5.10) 

To obtain the eigenvalue Pl, we multiply (5.10) by W,, integrate over z, and inte- 
grate by parts when necessary; in addition, we use the facts that 

W;l = - (Po$+ a"W0 

and that Wl does not vanish on the boundaries while W, does. In  this manner, we 
obtain 

P1a2 = - W,W&,. (5.11) 

This relation makes clear the fact that O(E*) corrections to (5.6) are a direct 
consequence of the dissipation in the first-order Ekman layers, as evidenced by 
our modified Ekman conditions (5.9b).  If this effect were neglected (or of higher 
order, e.g. near a free surface), the immediate consequence would be PI = 0. 

Further manipulation of (5.11) yields 

= - 4n2/2/(2)a2. 

Thus, through first order, 

(5.12) 

(5.13) 

which is in exact agreement with the normal modes results (Niiler & Bisshopp 
1965, p. 757). We take that as a demonstration of the validity of the boundary- 
layer formulation. 

We have also extended the analysis in a straightforward manner through 
O(EB). The details of the computation are given in the appendix. The results are 

(5.14) 
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Requiring P to be a minimum yields the computational formulae, 
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P = 8.6956 (1. - 1*108E*+ 0*1533E$, (5.15) 
a = 1.305 (1. - 0.5538E)- 0.3450E4). (5.15b) 

The progression of the numerical constant in (5.15a) indicates that the 'rough' 
agreement between the results of Niiler & Bisshopp and Chandrasekhar at  
E = 

In  table 1 we show the quantity PIPo as calculated using (5.13), (5.15a), and 
the Rayleigh-Ritz mebhod. At E = the agreement of the asymptotic 
results with those of Chandrasekhar is good ( < 2% difference), but the extension 
of ( 5 . 1 5 ~ )  to higher Ekman numbers would seem to require the calculation of 
additional terms. The agreement between the value of a a t  E = 10-5 using 
(5.15b) and that of Chandrasekhar is excellent. Thus, (5.15) provide accurate 
asymptotic formulae and combine with previous results to  yield stability charac- 
teristics for the entire range of Ekman (Taylor) numbers. 

is not merely qualitative. 

E 2 terms 3 terms Rayleigh-Ritz 

0 1.0 1.0 - 
10-6 0.889 0.891 - 
10-6 0.837 0.841 0.857 
10-4 0.761 0.768 0.817 

TABLE 1. The quantity PIP, calculated by different methods 

6. The effect of side walls 
We now supplement the normal modes results by treating the asymptotic 

equations including the effect of rigid side walls. This is of little practical impor- 
tance since it will be seen from the results below that for small Ekman number, 
most cylinders of reasonable shape (excluding very tall cylinders) can be regarded 
as unbounded layers as far as stability characteristics are concerned. (This 
statement is true, however, only if centrifugal effects are ignored.) What follows is 
of theoretical interest, however, since it affords an opportunity to investigate the 
effect of side walls on the preferred mode of instability, allowing fully three- 
dimensional disturbances. Extensive experimental evidence for both stationary 
and rotating systems (e.g. Koschmieder 1966, 1967a, b, 1968; Liang, Vidal & 
Acrivos 1969) has indicated that the initial motion is greatly influenced by 
container shape, a,lthough super-critical motions are influenced by non-linear and 
second-order effects, such as finite-amplitude motions, temperature dependence 
of viscosity, free surface deflections, etc. A theoretical linear treatment of con- 
vection in a box (due to  Davis 1967) succeeded in specifying preferred cell 
orientations, but the results were limited to two-dimensional rolls. Below we 
treat three-dimensional disturbances. 

It is convenient to rescale the radial co-ordinate so that it ranges from 0 to 1. 
Thus, if we introduce r = r'/ao, 
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(4 .9 )  then yield (dropping the subscripts on dependent variables) 

367 

aW 
- = -x,4v;p, ax 

= xi2V2,w + T, 
ax 

( 6 . 1 ~ )  

( 6 . l b )  

- PW = xs2V2,T. ( 6 . 1 ~ )  

Here 0 < r < 1 ,  xo = roE-*. The boundary conditions for these interior fields are 

w = 0) z = 0,1,  ( 6 . 2 4  

(6.2b) 

together with T = 0, (r = 1 )  (conducting walls), ( 6 . 2 ~ )  

or - = 0, (r = 1 )  (insulated walls). (6 .2d)  

If the motion is taken as axisymmetric, the radial component of velocity q falls 
in magnitude from 0(1) to O(E)),  and (6 .2b)  must be replaced by 

aT 
ar 

(6.2e)  

This last condition follows from a consideration of (4.4b, 4 . 6 ~ )  for axisymmetry. 
We also note that in deriving (6.1) horizontal diffusive effects were present in the 
interior of the fluid with the exclusion of all vertical diffusion, the latter being 
confined to Ekman layers. This is valid only if xo 3 1, with an incurred error of 
0 ( x i 2 ) .  Hence our treatment of (6 .1)  below for finite xo is not strictly valid, but we 
restrict our attention to xo > 10.0, for which we expect the results to be reasonably 
accurate. 

The solution to (6.1)-(6.2) will be by Galerkin's method, which is outlined 
below for conducting walls, m + 0. The following representations are assumed: 

N 

N 
cosnz, 

( 6 . 3 ~ )  

( 6 . 3 b )  

( 6 . 3 ~ )  

where wn, t,, p ,  are constants. J, is the mth-order Bessel function, and, as before, 

Jm(aE) = 0 (a = 1 ,2 ,  ...). 

Thus ( 6 . 3 a ) b )  satisfy the necessary boundary conditions. m is the azimuthal 
wave-number and takes on integer values. 
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The radial trial functions Rg(r) are picked as solutions of the system, 

(6 .4a)  

RE = finite (Y = o) ,  (6 .4b)  

&?=-- dr - 0 (Y = I ) .  ( 6 . 4 ~ )  
dRg 

These functions clearly satisfy the boundary conditions on p. Solutions to (6.4) 
may be written 

where a,,$ is the Kronecker delta. (For details concerning these functions, see 
Chandrasekhar 1961, appendix V.)  The Bessel functions are also orthogona,l, viz. 

In the usual manner, the finite represenfations (6 .3)  are substituted into (6.1) 
mid the residuals are required to  be orthogonal to the chosen trial functions, thus 
generating the linear system of Galerkin equations for the expansion coeilicients, 

(6 .9a)  

for n = 1,2,  . . . , N .  Here we have defined the integral 

a j ,  n) = Iol Jm(ayr) R3) rd r ,  

Combining (6.9) to give one set for the w, yields 

(6.10) 
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for n = 1,2, ..., N. The system (6.11) is homogeneous and the requirement of 
non-trivial w, becomes 

where A is an N x N symmetric matrix with elements 

det (A) = 0, (6.12) 

Roots of the determinental equation were found numerically for various 
values of xo to yield a modified Rayleigh number-aspect ratio curve. The results 
of these calculations for m = 1,2, together with those for m = 0 (obtained by a 
slightly different formulation in terms of the Stokes stream function; Homsy 
1969) are shown in figure 1. 

9.2 

P 

9.0 

I I I I I I I I I I I I I I 
12 14 16 18 20 22 24 

x,, = T,,E-* 

FIQURE 1. Neutral stability curves for three azimuthal wave-numbers. 

We note several important features of these results. First, the values of P for 
various wave-numbers all tend toward the value P = 8.6956 as xo increases, 
which indicates the diminished constraining effect of the side walls with increasing 
aspect ratio or decreasing Ekman number. Secondly, each neutral stability 
curve exhibits local maxima and minima, which are due to cell transitions as the 
' comfortable' values of xo given by (5.7) are encountered. Similar behaviour has 
been noted in the case of slow rotation (high Ekman number; Homsy 1969). 
Lastly, we note that the inclusion of side-wall effects in the linear analysis is in 
general insufficient to differentiate among the azimuthal wave-numbers. 
However, for moderate values of xo, m = 0 and 1 are preferred over m = 2. 
Calculations for insulated walls agreed with these results to within 0-1 yo, and 
hence are not given here. 

These remarks are of course limited to the asymptotic case, E < 0(10-6), and 
24 F L M  45 
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are not applicable to moderately small E.  Whether linear theory, including the 
effect of lateral walls, is adequate to predict preferred modes in actual experi- 
ments such a those of Koschmider (1967 b)  remains an open question. The above 
analysis does indicate, however, that axisymmetric disturbances may be assumed 
in treating asymptotic cases without incurring serious error in the calculated 
Rayleigh number. We make use of this fact in the subsequent paper which 
includes the effects of a centrifugally driven basic state. 

Grateful acknowledgement is made to the National Science Foundation for 
partial support of this research through grant number NSF GK 2505. Also, one 
of the authors (G. M. Homsy) held an NSF Traineeship. 

Appendix 

may be written 
To the third order, the interior equations governing the stability of the layer 

(i = 0, 1 ,2) ,  I % = v2w 
l i  ax 

with the conditions 
wo = 0, z = O , l ,  

W I I z = t y  = TQ;PZlJ2I,=g+ 

w21z=4*g = T V34l.J2l.=&. 

Eliminating pi ,  q, (A 1) give 
a2wi i 

0 = -- + V!Wi - x (P, V?Wi-,) (i = 0, 1,Z) .  
a x 2  n= 0 

If we now introduce the notation, 

wi = q(z)Jm(ax)eime, 

D = d/&, 
z 

(A 3) become O = D2W,-a6W,-a2 C P,W,-,, 
Tb=O 

and the boundary conditions become 

(-45) 

w, = 0, 2 = 0,1, 

q z = g * +  = T (&W”)-’mJl,=&*& 
w2l = + (.JC 2)a2)-lDW, Iz=pg.  

- 

Now let the nth eigenvalue and the nth eigenfunction be denoted by a super- 

pn = ~2 -+ ~ k p y  + E+P; + ..., script. Thus, 

wn = w$ + E*wT + E * w ~  + , . . + (Ekman correction fields). 
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We require that the eigenfunctions be normalized, viz. 

(wn, w"> = W"w"dz = 1. (A 6 )  so' 
Here w is taken to mean the total axial velocity, i.e. interior plus Ekman fields. 

W r  = 42 sin (mn-z), 

fl  = ((mn)2+a6)/a2, 

For the first order, the solution t o  (A 4) yields 

and (w,", w;;Z) = am, n' 

Here we have used the normalization requirement (A 6). 
The second-order eigenvalue is found from the differential equation, 

Pta2W?+PTa2W$ = -D2WT+a6WT. (A7) 

We take the inner product of (A 7 )  with W;l" and integrate over z, by parts when 
necessary, to obtain 

P?a2Sm, = WTDW$ + (P;;Za2 - P$a2) (WY, W r ) .  (A 8) 

Form = n = 1, use of (A5) yields the result in the text, (5.11)-(5.12), 

4n2 - - -- 
11(2)a2' 

Since the { W$} are complete, the W i  have expansions 
m 

which converge to W;4 everywhere except at  the end-points. Furthermore, 

am, m = (W?, WT). 
For n + m, we have from (A 8), 

For m = n, use of the normalization requirement (AB), to O(E&) implies 

<w:, w,") +(Gl", w,") = 0. (A 12) 

It can be shown that the integral involving the Ekman fields GI is at most O(E) ,  
due to the fact that wo vanishes near the boundaries, so that (A 12) implies 

an+ = 0. 

Below we shall need a relation for OW: which cannot be obtained by differen- 
tiation of (A 10) (the resulting series is divergent). We rather obtain the result by 
integrating ( A 7 )  once, using (A lo), (A 11) when necessary. In  this manner, 

O3 cos (2k + l)nz] 
. 

24-2 
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For the third-order term, we have from (A4), 

a2(Pg Wp + Py W;+ Pp W t )  = a6 W2- D2Wg. (A 14) 

Proceeding as before, the inner product of (A 14) with W r  yields, after integration 
by parts, 

For m = n = 1, using the fact that al, = 0, we have simply 

Pga26,, = W t D  Wpli - Pya2( Wr,  Wp) .  

Pia2 = W i  D Wd; 

(A 15) 
1 - (ow: D W& +DW: D W ; ~ ~ ) .  

$?a2 

Here we have made use of the boundary condition, (A 5 ) .  Inserting our expression 
for OW: given by (A 13), we have the final result, 

Thus, through O(E*), the lowest eigenvalue becomes 

This corresponds to the result (5.14) in the text. We now minimize P as a function 
o f a  in the usual way: 

Write the wave-number a at which the minimum P occurs as 

a = a0(l +bEi+cEi). 

Inserting into (A 18) and equat.ing powers of E yields 

= n2/2, b = - 4/(32/(2)at), c = 0 

For the value of P a t  this minimum, 

8 
P = 3 a :  

Inserting the numerical value of E~ yields the formulae (5.15) in the hext. 
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